Determination of Object Directions Using Optical Flow for Crowd Monitoring
نویسندگان
چکیده
Determination of object direction in a multi-camera tracking system is critical. The absence of object direction from other cameras pose challenges if the object is along the optical axis. The problem of determining object direction worsens further if the cameras in the existing infrastructure are improperly placed and are uncontrollable. To determine the direction of an object in such situations, three methods based on optical flow (OF) are presented. The first method uses centroids of optical flow vector magnitudes and Kalman filter for tracking and is suitable for less crowded scenarios. The second method uses geometric moments to evaluate the flow vector distribution and to ascertain the direction in case of crowded scenarios by partitioning the scene and then applying moments to individual partitions independently. The third method is appropriate for small-sized objects near vanishing points where global object motion is less. During surveillance, whether multi-object, single-object or crowded scenarios, the aforementioned methods are applicable accordingly. The results show that the object directions can be accurately inferred from three methods for different scenarios.
منابع مشابه
Determination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks
Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system. Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM). The system was ...
متن کاملAbnormal Crowd Motion Detection with Hidden Conditional Random Fields Model
Crowd motion analysis in public places is an important research subject in the monitoring field. This paper proposes an approach for detecting abnormal crowd motion using Hidden Conditional Random Fields Model (HCRF). This approach derives variations of motion patterns from direction distribution of the crowd motion obtained by the optical flow and these variations are encoded with HCRF to allo...
متن کاملNon-invasive Optical Techniques for determination of blood Glucose levels: A Review Article
This article reviews the development of non-invasive optical techniques for determination of blood glucose concentrations in diabetic patients. Early diagnosis and daily management are essential for ensuring the healthy life of diabetic patients. The determination of blood glucose concentration with common devices involves the chemical analysis of blood samples, which are obtained by pricking t...
متن کاملMotion based Event Analysis
Motion is an important cue in videos that captures the dynamics of moving objects. It helps in effective analysis of various event related tasks such as human action recognition, anomaly detection, tracking, crowd behavior analysis, traffic monitoring, etc. Generally, accurate motion information is computed using various optical flow estimation techniques. On the other hand, coarse motion infor...
متن کاملCrowd Motion Monitoring with Thermodynamics-Inspired Feature
Crowd motion in surveillance videos is comparable to heat motion of basic particles. Inspired by that, we introduce Boltzmann Entropy to measure crowd motion in optical flow field so as to detect abnormal collective behaviors. As a result, the collective crowd moving pattern can be represented as a time series. We found that when most people behave anomaly, the entropy value will increase drast...
متن کامل